COMMON PRE-BOARD EXAMINATION 2022-23

Subject: MATHEMATICS (STANDARD) -041

Date:
General Instructions:

1. This Question Paper has 5 Sections A - E.
2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.
3. Section \mathbf{B} has 5 questions carrying 02 marks each.
4. Section \mathbf{C} has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section \mathbf{E} has 3 Case Based integrated units of assessment (04 marks each) with sub-parts of the values of 1,1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
8. Draw neat figures wherever required. Take $\pi=\frac{22}{7}$, wherever required if not stated.

	SECTION A	
	Section A consists of 20 questions of 1 mark each	
S.NO		MARKS
1.	If p and q are positive integers such that $p=a b^{2}$ and $q=a^{2} b$, where a and b are prime numbers, then the $\operatorname{LCM}(p, q)$ is (a) ab (b) $a^{2} b^{2}$ (c) $a^{3} b^{3}$ (d) $a^{3} b^{2}$	1
2.	A quadratic polynomial, whose zeroes are $-3 \& 4$ is (a) $x^{2}-x+12$ (b) $x^{2}+x+12$ (c) $x^{2}-x-12$ (d) $2 x^{2}+2 x-24$	1
3.	If α and $\frac{1}{\alpha}$ are the zeroes of the quadratic polynomial $2 x^{2}-x+k$, then k is (a) 4 (b) $\frac{1}{4}$ (c) $\frac{-1}{4}$ (d) 2	1
4.	Find the value of k for which system of linear equations $x+2 y=3, \quad 5 x+k y+7=0$ is inconsistent (a) $\mathrm{k}=\frac{14}{3}$ (b) $k=\frac{-14}{3}$ (c) $\mathrm{k}=10$ (d) $k=-10$	1
5.	The vertices of a parallelogram taken in order are $\mathrm{A}(1,2), \mathrm{B}(4, \mathrm{y}), \mathrm{C}(\mathrm{x}, 6)$ and $D(3,5)$. Then (x, y) is (a) $(6,3)$ (b) $(3,6)$ (c) $(6,5)$ (d) $(1,4)$	1
6.	In $\triangle A B C$ and $\triangle D E F \angle B=\angle E$ and $\angle F=\angle C, \mathrm{AB}=3 \mathrm{DE}$, then the two triangles are (a)congruent but not similar (b) similar but not congruent (c) neither congruent nor similar (d) congruent as well as similar	1
7.	If a pole 6 m high casts a shadow $2 \sqrt{3} \mathrm{~m}$ long on the ground, then the Sun's elevation is (a) 60° (b) 45^{0} (c) 30° (d) 15^{0}	1

8.	In $\triangle A B C$ right angled at B, if $\tan A=\sqrt{3}$ then $\cos A \cos C-\sin A \sin C=$ (a) -1 (b) 0 (c) 1 (d) $\frac{\sqrt{3}}{2}$						
9.	In the figure, if $\frac{O A}{O D}=\frac{O C}{O B}$, then which pair of angles are equal? (a) $\angle A=\angle C, \angle B=D$ (b) $\angle A=\angle B, \angle C=D$ (c) $\angle B=\angle C, \angle D=\angle A$ (d) none of these						
10.	In $\triangle A B C$, $\mathrm{DE} \\| A B$, if $C D=3 \mathrm{~cm}, \mathrm{EC}=4 \mathrm{~cm}, \mathrm{BE}=6 \mathrm{~cm}$, then DA is equal to (a) 7.5 cm (b) 3 cm (c) 4.5 cm (d) 6 cm						
11.	In the given figure, if TP and TQ are tangents to a circle with centre O , so that $\angle P O Q=110^{\circ}$, then $\angle \mathrm{PTQ}$ is (a) 110^{0} (b) 90^{0} (c) 80° (d) 70°						
12.	The area of a square that can be inscribed in a circle of radius 8 cm is (a) $256 \mathrm{~cm}^{2}$ (b) $128 \mathrm{~cm}^{2}$ (c) $64 \sqrt{2} \mathrm{~cm}^{2}$ (d) $64 \mathrm{~cm}^{2}$						
13.	The ratio of the total surface area to the lateral surface area of a cylinder with base radius 80 cm and height 20 cm is (a) $1: 2$ (b) $2: 1$ (c) $3: 1$ (d) $5: 1$						
14.	The mean and mode of a frequency distribution are 28 and 16 respectively. The median is (a) 22 (b) 23.5 (c) 24 (d) 24.5						
15.	The number of revolutions made by a circular wheel of radius 0.7 m in rolling a distance of 176 m is (a) 22 (b) 24 (c) 75 (d) 40						
16.	For the following distribution					1	
	Class	6-11	12-17	18-23			
		- 10	15	8	11		
	The upper limit of the median class is (a) 18.5 (b) 20.5		(c) 25.5				
17.	Two different dice are thrown together. The probability of getting the sum of the two numbers less than 7 is (a) $\frac{5}{12}$ (b) $\frac{7}{12}$ (c) $\frac{12}{5}$ (d) $\frac{3}{11}$						
18.	If $5 \tan \theta=4$, then the value of $\frac{5 \sin \theta-3 \cos \theta}{5 \sin \theta+2 \cos \theta}$ is (a) $\frac{1}{6}$ (b) $\frac{1}{7}$ (c) $\frac{1}{4}$ (d) $\frac{1}{5}$					1	
19.	DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement A (Assertion): The number 6^{n} never end with digit 0 for any natural number n Statement R(Reason) : The number 9^{n} never end with digit 0 for any natural number n					1	

	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true.			
20.	DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement A (Assertion): The value of y is 3, if the distance between the points $\mathrm{P}(2,-3)$ and $\mathrm{Q}(10, \mathrm{y})$ is 10 . Statement R(Reason) : Distance between two points is given by $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true	1		
	SECTION B			
	Section B consists of 5 questions of 2 marks each.			
S.No.		Marks		
21.	If $217 \mathrm{x}+131 \mathrm{y}=913,131 \mathrm{x}+217 \mathrm{y}=827$, then find the value of x and y	2		
22.	In the adjoining figure, $\mathrm{DE} \\| \mathrm{AC}$ and $\mathrm{DC} \\| \mathrm{AP}$. Prove that $\frac{B E}{E C}=\frac{B C}{C P}$	2		
23.	From an external point P , tangents PA and PB are drawn to a circle with centre O . If $\angle \mathrm{PAB}=50^{\circ}$, then find $\angle \mathrm{AOB}$	2		
24.	The minute hand of a clock is 10 cm long. Find the area of the face of the clock described by the minute hand between 9 am and 9.35 am OR If the area of a sector of a circle is $\frac{5}{18}$ th of the area of a circle, then find the central angle of the sector.	2		
25.	The rod AC of a TV disc antenna is fixed at right angles to the wall $A B$ and a rod CD is supporting the disc as in figure. If $\mathrm{AC}=1.5 \mathrm{~m}$ and $\mathrm{CD}=3 \mathrm{~m}$, find (i) $\tan \theta$ (ii) $\sec \theta+\operatorname{cosec} \theta$	2		

Find (i) the difference between the heights of the lighthouse and the building.
(ii) the distance between the lighthouse and the building.

OR
The ratio of the height of a light house and the length of its shadow on the ground is $\sqrt{ } 3: 1$ What is the angle of elevation?
(iii) What is the distance from the foot of the lighthouse to the top of the building?

